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I NTRODUCT ION

Expert System technology has in recent years advanced to the
point where it is being increasingly viewed as a practical tool for

supporting decision makers addressing significant real world

decision problems. Associated with th-'s trend, however,, has been

some concern about the nature of user interaction with expert

0. systems and understanding the conditions under which cooperative and

effective user/expert system problem solving behavior can occur.

This paper describes empirical research investigating the

cognitive psychology of user interactions with expert systems. This

research was performed in the context of a more general research

program that focuses on achieving two interrelated goals: (1) to

advance a general understanding of the psychology of user

g interactions with intelligent machines; and (2) to generate design

:A principles that lead to the optimal user engineering of future

expert systems.

The central theory discussed below is that the nature of the

cognitive interaction between a user and a rule-based expert system

is driven to a significant extent by two mediating variables:

1. The degree of consistency between the rule-based
system and the user's problem solving processes;

2. The user's mental model of the system's operating
processes.

The remainder of this paper (1) provides a brief overview of

expert system technology, (2) discusses some research relating human

and expert system problem solving, (3) presents a basic theory of

user interaction with an expert system, and (4) provides

experimental results testing this theory.

'Ol1



Expert Systems in Artificial Intelligence

In the past decade, a decision aiding technology has emerged

from the discipline of artificial intelligence that has the

potential for greatly improving the decision speed and quality of

problem solving. Expert systems are computer-based systems that

provide expert advice (e.g., medical diagnoses) to users in

real-world complex problem domains. Expert system design usually

consists of two components: a "knowledge base" and an "inference

engine". The knowledge base contains all the domain-relevant

expertise. This expertise is usually encoded in the form of

condition-action pairs, referred to as production rules that specify

a set of heuristics about "What to do if..." The inference engine

serves two functions. First, it implements general control

procedures for deciding the sequence of rules to test. Second, if a

mathematical model of "inference strength" is utilized, the

inference engine will update the relevant values (e.g., likelihood

estimates). In effect, the role of the inference engine is to apply

domain specific knowledge to problem specif ic data to generate

t.. problem specific conclusions.

In addition to simply being encoded as production rules, a

knowledge base can usually be conceptually organized into some type

of nearly decomposable structure. For example, as illustrated in

Figure 1, an inference network is a structure that contains

4 top-level hypotheses, called goal hypotheses, which are decomposed

into various levels of subhypotheses that are further broken down

into specific items of evidence that can support those hypotheses.

With each node, there is often an associated prior degree of belief

2
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and a rule for combining subnode degree of belief values into an

updated degree of belief for the node.

Most expert systems developed to date have functioned in the

* role of independent consultation systems, where all problem specific

information required by the system is directly requested from the

user. In a typical session with an expert consultation system the

system attempts to evaluate the degree of belief of a goal

* .~ hypothesis by chaining down the inference net, identifying the

evidence items that affect the goal hypothesis, and querying the

user about each relevant item of evidence. Consequently, user

interactions with an expert system during a consultation session

* ,~ consist primarily of answering system questions and occasionally

requesting an explanation of the inference process (see Duda et al.,

1979; Shortliffe, 1976).

Some recent applications of expert system technology however

nave focused. on the use of expert systems as an intelligent

interface between a user and a larger complex information processing

system. An expert interface system can be defined as a software

system that uses a rule-based model to automatically monitor the

contents of an external data source, generate conclusions using the

data source as the primary information source, and inform the user

of those conclusions along with the data that lead to the ultimate

conclusions. The primary function of the expert interface system is

to enhance an operator's ability to utilize an independent baseline

system, but typically does not provide the sole interface to the

*baseline system (see Figure 2). (See Lehner, et al., 1983 for

discussion.)

while expert interface systems implement the same rule-based

id 4
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program architectures found in consultation systems, instead of

querying the user to ascertain basic pieces of evidence, the expert

interface system will call up any of a set of application specific

primitive functions to evaluate evidence nodes. These primitive

functions, in turn, can interrogate (get input from) external data

sources (i.e., the baseline system) for factual information (see

Figure 2).

From a human factors perspective, there are some key aspects of

expert interface systems that make them very different from expert

* consultation systems. First, in a consulting system users must have

sufficient domain expertise to answer the system queries, whereas

expert interface systems are essentially turn key systems that

obtain problem specific data from other sources. Consequently, the

user community of the expert interface systems will reflect a very

broad range of problem domain expertise, and such systems must be

compatible with differing levels of user expertise. Second, the

time constraints on the decision processes of these new interface

p systems is typically shorter and more diverse t han was the case with

consultation systems. Third, since the information inputs used by

* an expert interface system are obtained from an external data base,

and not the user, it cannot be assumed, when a result is displayed,

-- that the user is already intimately familiar with all the relevant

data that lead to that result. A general theory of user/expert

system interaction must be able to deal with both types of expert

systems,

6
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Human and Expert System Problem Solving

2 The processes of expressing different problem solving strategies

in rule-based expert systems has lead to a consideration of human

cognition in terms of similar rule-based models. Rouse (1980)

'S. describes a production system as a rank-ordered set of pattern-evoked

q rules of action such that actions modify the pattern, thereby evoking

other actions. Human cognitive processing has been viewed in a

similar way. In discussing the application of production systems to

the modeling of human-computer interaction, Durrett and Stimmel (1981)

177 conclude that production systems may provide powerful empirical and

theoretical techniques for investigating human factors issues

associated with interactive computer systems. Young (1979) considers

the similarity between production systems and aspects of the human

cognitive system as creating the potential for addressing theoretical

issues in cognitive psychology.

Given the above perspective on human problem solving, one way to

view user interactions with expert systems is in terms of two separate

PL production systems working in tandem to add ress a specific problem

solving domain. Each system, both human user and expert rule base,

bring some degree of domain knowledge and problem solving strategies

to the decision making environment. However, it is unlikely that both

system share identical data sets, problem solving heuristics (i.e.,

rules) or control strategies. Effective human/machine cooperative

problem solving occurs when both systems' approaches combine to form

one unified strategy that results in significantly higher performance

than either system could have reached independently.

Pa 7



Basic Theory

A basic theory is proposed that relates the quality of

cooperative problem solving with an expert system to: (1) cognitive

consistency, the degree of consistency between the rule-based system

and the user's problem solving processes; and (2) mental model, the

user's conceptual understanding of the basic principle of the system's

problem solving processes.

Cognitive consistency is defined as the degree to which the user

and knowledge-based system utilize similar domain specific production

fz systems. That is, the degree to which they share the same lowest

level data items, product rules, and control procedures (see Figure

3).

The quality of a user's mental model is defined in terms of the

user's understanding of the general principles of the system's

processes, which may be formulated by both exposure to a conceptual

model of the system and direct interaction with the system. In the
.

case of expert systems, the user's mental model concerns the degree to

which the user understands (1) that knowledge has been encoded as

rules, (2) that rules are organized by an inference network of

relationships, and (3) that explanatory traces involve chaining

4forward (or backward) along the inference network. Note that this

definition explicitly excludes any reference to the user's

understanding of the domain specific rules in the expert system, but

rather focuses on a user's understanding of the basic principles of

the system's processes. To the extent that the user understands the

V I expert system's domain specific knowledge, that knowledge is

incorporated into his own problem solving procedures, i.e., becomes a

44
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component of cognitive consistency.

The basic theory proposed here is that in a user and expert

system problem solving situation, performance is dependent on both

cognitive consistency and the user's mental model, and that there is a

strong interaction between two variables in their impact on

performance. Figure 4 shows the pattern of this predicted

interaction. Obviously the strongest prediction is that a good mental

model of expert system processing will facilitate user understanding

of system results and explanations even if the system logic is

substantially different from the user's. In particular, when a user

posesses an accurate mental model, cognitive inconsistency should

- result in better performance than problem solving involving a high

level of cognitive consistency.

Upon initial examination, this theory may appear

bcounter-intuitive, as it predicts cognitive consistency leading to a

-. performance decrement for users possessing accurate mental models.

However, if viewed from the perspective of the user and machine as two

S interacting production systems then this prediction is quite

reasonable. In the high cognitive consistency condition, the

situation is such that the user and intelligent system are two nearly

identical production systems that are solving a common problem by

applying the same production rules and control strategy to the same

problem specific data. Given this high degree of overlap between the

two systems there is little room for cooperative problem solving to

imroeupon what either the ueormachine could do in isolation.

As cognitive consistency decreases however, the potential

it improvement of cooperative problem solving over individual user or

#1%,
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machine problem increases proportionately. However, in order to

realize this potential, the user must still be able to effectively

interact with the system. It is proposed here that an accurate mental

model will facilitate user/expert system interaction, thereby

permitting effective use of the system in the cognitive inconsistent

condition.

Described below is an empirical test of this theory.

EXPERIMENTAL METHOD

Subjects

Thirty-two (16 male and 16 female) undergraduate students from

the Catholic University of America served as volunteer subjects in

this study. The mean age was 19.3 years with a range of 17-22 years.

None of the subjects had previous experience with rule-based systems

or computer-aided problem solving tasks.

Materials

P The framework used for development of the intelligent interface

was ERS, Embedded Rule Based System (Barth, 1982), which is in many

respects similar to the well known PROSPECTOR system (Duda, et al.,

1979). The ERS system consists of an inference engine, rule base

parser, and language for representing rules. Rules in a text file are

parsed and compiled into internal data structures durin~g run-time

initialization. The inference engine then uses these data structures

to drive the systems decision making process. This process may

12



involve gathering evidence from the user, as is usually done in expert

..~ i consultation systems, or from a set of primitives supplied for a

- particular application, or both. As sufficient evidence is gathered

conclusions or advice is reported in the form of the degree of belief

in the top level, goal hypotheses that were defined in the rule base.

The system continues gathering evidence and reporting advice, until no

more evidence remains to be gathered, or the user issues a quit

command. Written in Pascal, ERS was developed on a VAX-ll/780 under

the UNIX operating system, version 4.1 bsd. and has been installed on

V an IBM PC with 128K bytes of memory, under the UCSD P-System.

*For this study, a simplified version of ERS was implemented on an

Apple IIe microcomputer with 64K bytes of memory. The rule base

representing the testbed domain consisted of an inference network

containing 63 nodes, 5 goal hypotheses, 39 rules, and 109 links

between nodes.

* Experimental Design

A 2 x 2 factorial design was used to create the experimental

conditions. The two independent variables were (1) cognitive

consistency and (2) mental model (see Table 1). The two levels of

cognitive consistency were created by the nature of the problem

solving style used by the subject. In each problem, the expert system

operates in a goal-driven, backward-chaining manner through the rule

base to evaluate goals. High cognitive consistency was defined when

the user is taught to problem solve in a similar goal-driven,

backward-chaining manner. Low cognitive consistency occurs when the

user problem solves in an almost opposite, data-driven,

13
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TABLE 1

EXPERIMENTAL DESIGN MATRIX

Independent Variables

Group
Number Mental Model Cognitive Consistency

1 Accurate High

2 Accuvate Low

3 None High

4 N4one Low

LI
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forward-chaining process. The application of both procedures resulted

in identical final solutions for all data possiblities.

3 The two levels of the second independent variable, mental

model, were (1) accurate mental model and (2) no mental model.

Subjects in the accurate mental model condition received as part of

their instructions a written description of an inference network.

This section described the structure of a general inference network,

explained how the expert system identified goals, intermediate

hypothesis, and data items, and chained up and down the network to

obtain degree of certainty values for each goal. Included in this

section was a pictoral display of an inference net and a simple

example of its operation. By working through this section the user

developed a mental model of how the expert system solved problems.

U Testbed Domain

The experimental domain was a simulated stock market setting in

which five different types of securities fluctuated in value during

the testing sessions. The increase or decrease in security value was

influenced by two types of data: (1) general market conditions, and

(2) specific trading activities. Market conditions concerned the

degree to which the general market state could be identified as

"bear," "mixed," or "bull." Trading activities described the volumes

of buying/selling during a hypothetical time frame, e.g., "Blue Chip

securities were sold by 500 shares in two weeks."

Task problems were constructed by creating patterns of specific

market conditions and trading activities and defining the resultant

security value fluctuations. For each possible pattern of data



combinations there was exactly one of the five securities whose

value increased the highest. Thus, for each task problem there was

one optimum security that should be recommended for purchase.

Expert System. The expert system included an inference network in

* which each of the five securities was set as a goal. The experimenter

provided the system with access to data concerning previous market

conditions (e.g. "bear"), current market conditions (e.g., "mixed"),

and the volumes and direction that each security is currently being

traded. The system utilized backward-chaining procedures to validate

the degree of belief in each of the lowest-level data nodes, assess

value to the intermediate hypotheses, and in turn estimate the degree

- to which each of the five securities should be recommended for

purchase. At this point the system displayed the five securities as

rank-ordered (greatest to poorest) recommendations for purchase (see

Figure 5) for a typical screen display of the system's results for a

-. specific problem).

Procedure

After reading a description of the experiment and signing a

consent form, subjects received the instruction booklet pertaining to

their particular mental model/cognitive consistency group condition.

These instructions specified the objectives, procedures, and

requirements of the problem solving task. Each set of instructions

previously defined the level of mental model and type of problem

solving procedures to be implemented.

Subjects were seated at a large table directly in front of the

expert system with ample space to arrange their individual problem

t solving sheets. Upon completion of the experimental booklet, subjects

16



Investigated goals with degree of beliet =-IOU are:

It is advisable to buy SPECULATIVE (spec)
Prior degree was 0.0. Current degree is 3.7P.

It is advisable to buy BONDS (bonds)
Prior degree was 0.0. Current degree is 1.8

It is advisable to buy BLUE CHIP (bluechip)
Prior degree was 0.0. Current degree is -1.8

It is advisable to buy PREFERRED (pref)
Prior degree was 0.0. Current degree is -3.7

It is advisable to buy WARRANTS (warr)
Prior degree was 0.0. Current degree is -6.0

AN EXAMPLE OF THE SCREEN DISPLAY OF THE EXPERT
SYSTEM'S RECOMMENDATIONS

FIGURE 5
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received three test problems to practice use of their own procedures.

The type of data presented to the subject was of the same nature,

3 i.e., market conditions and trading activities, that the expert system

utilized. Competent use of the appropriate styles of procedures,

either (1) cognitive consistent or rule-driven, backward chaining, or

p (2) cognitive inconsistent or data-driven, forward chaining, was

reached by all participants.

At this time subjects received practice interacting with the

expert system. After viewing the system's prioritized list of

security recommendations, users practiced querying the system for its

decision rationale. In other words, the user saw what the expert

system recommended for a specific problem and sought to determine

"how" and/or "why" this particular recommendation was reached.

Through the use of a node description command, initiatecd by the

S entering of a "Id.," carriage return, and specification of the node name

to be examined, users were able to examine important components of the

systems logic and reasoning. Figure 6 provides a typical screen

~ display of a node description.

By requesting a description of this node, named "'M3,"1 the user

ascertains that: (1) this node concerns the degree to which "the

previous market was bull and the current market is bear"; (2) the

expert systems current degree of belief in this node is 3.7; (3) there

are two antecedent nodes, "cbear" of current degree of belief 3.7, and

"pbull" of current degree of belief 6.0; and (4) there exists one

antecedent node, "bear" of value 3.7. While this specific node

L description may provide little rationale itself, it does provide a

window of the expert system's structure and suggests paths for further

18
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This space concerns whether or not:

pthe PREVIOUS market was BULL and the CURRENT market is BEAR (m3)

TYPE: and

not asked

Prior Degree = 0.0

Current Degree = 3.7

Antecedents cbear 0.0 3.7
" pbull 0.0 6.0

j Consequents bear 0.0 3.7

SCREEN DISPLAY OF NODE DESCRIPTION

FIGURE 6
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investigation, namely either "Icbear" or "pbull," that may provide

insight into the data the system utilized. Figure 7 provides the type

* of structure one may infer from the above example. Note that

successful interaction with the system involves the specification of

several successive node description commands to reach meaningful

* information, e.g., the degree of certainty of the systems lowest level

data items.

The experimental process tested subjects individually for six

separate problems. A time constraint of 150 seconds was imposed upon

each task, Pilot studies demonstrated this time allowance as adequate

for proficient interaction with the system and use of individual

problem solving procedures.

Each of the problem solving tasks proceeded as follows. Seated

in front of the expert interface system with individual problem

solving sheets within easy reach, a subject viewed the system's rank

ordered list of security recommendations for the current problem. The

experimenter handed the subject written data concerning "previous

market" and "current market" estimations. At this point the subject

could allocate time to either querying the system with the I'd"

* command, utilizing the individual problem solving sheets, or a

combination of both. After 180 seconds, the subject viewed the

* system's recommendations a final time and terminated the problem

*solving session. The subject recorded on an answer sheet by simply

checking off the one or two securities most recommended and by writing

a few sentences describing why.

At the completion of six such problems, subjects completed a

tbrief qTuestionnaire assessing reaction to the problem solving

hi 20
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experience and were adequately debriefed.

Performance Measures

For each of the six problem solving tasks, one of the five

securities had been evaluated as the optimal recommendation during

* task construction. This benchmark solution was reached by utilizing

problem solving procedures applied to the complete data set. It

should be noted that both types of procedures, forward-chaining and

backward chaining, reach the same conclusions given the same data.

Thus, for each of the six problems we constructed a benchmark solution

* as a comparison for the subjects' responses.

The major performance measurement was the number of times a

subject's response matched the predetermined optimal one. Individual

scores could range from 0, none of the problems correct, to 6, all of

the solutions matched with the optimal ones.

A second performance measure was the 10-item, subjective

questionnaire. Subjects indicated on a 10-point scale from 0 ("very

strongly disagree") to 10 ("very strongly agree") their agreement with

statements addressing (1) the understanding of the expert interface

system's operating procedures, (2) the ease of system use, (3) the

a.- confidence of final user decisions, and (4), the adequacy of the time

allotment.

Finally, the number of user queries to the expert interface

system were recorded. These "d" commands were noted for each subject

over each of the six problems.

I A% 

22



RESULTS

The principle issue in this experiment was the combined effect of

* mental model and cognitive consistency on subjects problem solving

with an expert interface system. Table 2 provides the means, standard

deviations, and range for each of the four experimental groups. The

data set was subjected to a 2 x 2 analysis of variance procedure

investigating the main effect of each of the independent variables a

well as the interaction between them (Table 3). The strong main

M effect of mental model, F(1,28) - 11.15, p - .00214, demonstrated that

an effective understanding of the system's operating procedures

facilitated cooperative problem solving quality. As predicted, a main

effect for cognitive consistency did not occur, F(1,28) - 0.0. The

presence of a significant interaction between mental model and

cognitive consistency, F(1,28) - 8.2, p - .0079, confirmed our central

hypothesis and theoretical basis for user/system problem solving.

A graphical presentation of subject correct responses as a

* percentage of total problems is depicted in Figure 8. The mental

model/cognitive consistency interaction is easily observable.

Individual comparisons confirmed several hypotheses. For those

possessing an accurate mental model, inconsistent (forward-chaining)

procedures led to a significantly greater performance, than consistent

(backward-chaining) procedures t(14) =2.17, p < .05. For users

without an accurate mental model performance improved when consistent

(backward-chaining) procedures were followed, although this difference

failed to reach significence, t(14) = 1.90, p =.079. When evaluating

the two groups implementing inconsistent procedures, subjects
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TABLE 2

.q MEANS, STANDARD DEVIATIONS, AND RANGES FOR FOUR GROUPS

Group Mean SD Range

Accurate MM/Consistent 3.375 1.4079 1-5

. Accurate MM/Inconsistent 4.875 1.3562 2-6

A No MM/Consistent 3.125 1.3562 1-5

No MM/Inconsistent 1.625 1.7678 0-4

f.

SR.
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TABLE 3

ANALYSIS OF VARIANCE FOR PERFORMANCE MEASURES

Source df SS F p

Mental Model 1 24.5 11.15 < .01

Cognitive Consistency 1 0.0 0.0

Interaction 1 18.0 8.2 - .01

.Within 28 61.5
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possessing an accurate mental model performed significantly better,

t(14) - 4.13, p < .01.

As shown in Figure 9, there was a mental model/cognitive

consistency interaction predicted for each of the six test problems.

q Further data analysis was performed by evaluating subjects

reponses to the 10-item subjective questionnaire. Users receiving

accurate mental models reported greater "understanding of the system's

operating procedures," means of 5.7 and 5.7 (cognitive inconsistent

and cognitive consistent respectively) than those without an accurate

mental model, means of 3.4 and 3.8 respectively. Reports of "ease of

system use" followed the general interaction pattern, the means being

7.9, 6.7, 6.8, and 5.8. "Confidence of final user decisions" followed

the same pattern with means of 7.9, 6.7, 6.8, and 5.8. The "adequacy

of the time allotment" revealed the lowest performing group of no

mental model/cognitive inconsistent to be most time pressured, mean of

2.8, compared to the other three groups with means of 4.8, 5.5, and

4.4 respectively.

The final performance measure of the number of user queries

during user/system interaction revealed no differences across the four

conditions, the means being 5.4, 5.0, 5.3, and 5.4 respectively.
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Problem Problem Problem
1 2 3

4Cognitive Cognit ive Cognitive
Consistency Consistency Consistency
Low High Low High Low High

Accurate 1.00 .875 .625 .500 .750 .500

Mental
Model None 6.25 1.00 .000 .375 .250 .375

Problem Problem Problem
4 5 6

Accurate .875 .375 .750 .500 .875 .625
Mental-

Model None .250 .250 .375 .375 .250 .750

PERCENTAGE OF CORRECT RESPONSES OF GROUP
BY TASK PROBLEM

FIGURE 9
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DISCUSSION AND CONCLUSION

Overall, the results of this study support the basic theory that

the quality of user/expert system cooperative problem solving

performance is driven to a significant extent by both the degree of

consistency between the user's and expert system's problem solving

procedures and the user's mental model of the expert system's problem

solving processes. Highest problem solving performance was reached by

users possessing a good mental model and utilizing forward-chaining

(cognitive inconsistent) procedures. our basic explanation for this

result is that a user with an accurate mental model is in a position

to effectively interact with the expert system despite significant

differences between user's and expert system's problem solving

procedures. Consequently, such a user is in a position to exploit the

~ fact that the user and expert system have differing capabilities and

areas of expertise. A user that both has inconsistent problem solving

procedures and lacks an accurate mental model is not in a position to

understand the expert system's procedures. Poor performance is due,

in this case, to an inability to successful, interact with the expert

system. our results, therefore, indicate that problem solving

requires the user to be proficient in both (1) interacting with the

expert system and (2) utilizing successful individual problem solving

procedures.

The questionnaire analysis was useful in several respects.

First, the groups in the "accurate" mental model conditions

subjectively reported greater understanding of the system's processes

as would be expected. Second, reported confidence of final user

29



decisions followed the same interaction pattern indicating that high

performance and user confidence went hand-in-hand.

There were no significant differences in the actual number of

V user queries to the expert system during the task sessions. An

explanation for this may be that users possessing an accurate mental

model did not increase the quantity of node description commands,

rather, they simply requested information that would be of ultimate

use to them. These requests may have focused on high-quality queries,

as opposed to users who did not understand the expert system's

structure and obtained often irrelevant information to the immediate

task at hand.

From the perspective of the potential practical implications of

this theory, the most immediate impact is what the theory suggests

about how user interactions with expert consultation and expert

interface systems will differ. Users of expert interface systems are

likely to be significantly inconsistent from the expert system in both

the problem specific data they are initially aware of and the domain

specific heurisitcs utilized in problem solving. Consequently,

user/expert interface system interaction is a situation that naturally

relfects a great deal of cognitive inconsistency. As a result,

creating an accurate mendal model may be an essential ingredient for

the successful transfer of interface system to operational use.

Finally, regarding the completeness of the above research as a

test of the theory, it should be recognized that this initial research

r has operationalized cognitive consistency as the match between the

user's and the expert system's procedures. While we expect the same

pattern of performance to result, other dimensions of cognitive
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consistency need to be examined. Furthermore, a node description

command was the only type of explanantion a user could receive in this

study. This was chosen primarily because of the imposed time

constraint and the nature of the task setting. Other explanation

* capabilities should be examined, including a rule-trace or

presentation of the system's intermediate hypotheses. Finally, user

groups of diverse expertise levels should be studied over several

domains and under a varying range of time constraints.

LO Ongoing research is currently addressing further issues in the

user/system interface in an attempt toward developing a more complete

set of empirically-tested theoretical principles of user/expert system

interaction.
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